ASAP: Algorithm Substitution Attacks on Cryptographic Protocols (AsiaCCS 2022)

Abstract

The security of digital communication relies on few cryptographic protocols that are used to protect internet traffic, from web sessions to instant messaging. These protocols and the cryptographic primitives they rely on have been extensively studied and are considered secure. Yet, sophisticated attackers are often able to bypass rather than break security mechanisms. Kleptography or algorithm substitution attacks (ASA) describe techniques to place backdoors right into cryptographic primitives. While highly relevant as a building block, we show that the real danger of ASAs is their use in cryptographic protocols. In fact, we show that highly desirable security properties of these protocols - forward secrecy and post-compromise security - imply the applicability of ASAs. We then analyze the application of ASAs in three widely used protocols: TLS, WireGuard, and Signal. We show that these protocols can be easily subverted by carefully placing ASAs. %allowing attackers to learn long-term secrets in all cases. Our analysis shows that careful design of ASAs makes detection unlikely while leaking long-term secrets within a few messages in the case of TLS and WireGuard, allowing impersonation attacks. In contrast, Signal’s double-ratchet protocol shows higher immunity to ASAs, as the leakage requires much more messages.

Publication
In AsiaCCS, 2022